京瓷32.768K有源晶振,KT3225T时间显示晶振,KT3225T32768DAW33T,尺寸3.2x2.5mm,频率32.768KHZ,日本Kyocera晶振,有源贴片晶振,石英温补晶振,TCXO温度补偿晶振,3225mm有源振荡器,32.768KHZ有源晶振,温度补偿晶体振荡器,贴片温补晶振,有源温补振荡器,低抖动有源晶振,低耗能有源晶振,低电压温补晶振,低功耗温补晶振,高精度有源晶振,高性能有源晶振,时间显示有源晶振,定位系统有源晶振,通信导航有源晶振,移动通信有源晶振,游戏设备有源晶振,无线模块有源晶振,具有高精度高性能的特点。
温补晶振产品比较适合用于时间显示,定位系统,通信导航,移动通信,游戏设备,无线模块,通用MCU(带RTC功能)等应用。京瓷32.768K有源晶振,KT3225T时间显示晶振,KT3225T32768DAW33T.
DSO1612AR民用设备晶振,大真空有源晶振,7FG00003A03,尺寸1.6x1.2mm,频率32.768KHZ,输出逻辑CMOS,日本进口晶振,KDS贴片振荡器,32.768KHZ有源晶振,贴片有源振荡器,四脚有源晶振,1612mm有源振荡器,有源晶体振荡器,低电压有源晶振,低功耗有源晶振,低耗能有源晶振,低相位有源晶振,低抖动有源振荡器,高品质有源晶振,无线模块有源晶振,PC设备有源晶振,汽车导航有源晶振,汽车音响有源晶振,多媒体设备有源晶振,工业应用有源晶振,民用设备有源晶振,测量设备有源晶振,具有超高的耐压性能。
32.768K有源晶振产品比较常用于近距离无线模块、PC、汽车导航、汽车音响、多媒体设备、工业用测量设备、一般民用设备等应用。DSO1612AR民用设备晶振,大真空有源晶振,7FG00003A03.
CSX-750FHB32768000T-32.768MHZ-2.5V-XO振荡器,型号CSX-750F,尺寸为7050mm,频率为32.768KHZ,电压2.5V,时钟振荡器,日本进口晶振,西铁城晶振,有源贴片晶振,石英晶体振荡器,时钟振荡器,32.768K有源晶振,无线通信晶振,智能家居晶振,智能电表高精度32.768K晶振,智能电表远程抄表专用晶振,CSX-750FBC32768000T晶振,CSX-750FCC32768000T晶振,
产品广泛用于智能电表,无源通信,网络设备,智能电表远程抄表,仪器仪器,测量测试设备,医疗产品,无线模块,5G室外基站等领域.
彼得曼32.768K有源晶振的优势,Time requirements in modern metering applications have massively increased in the last few years. The usual requirement in modern metering applications is a time offset of 1 hour after 7 years. It should also be possible for the operating temperature range of the application to comply with this value. 1 hour max. after 7 years corresponds to a frequency tolerance of ±16 ppm absolute at 32,768 kHz. It is no longer possible for conventional 32,768 kHz oscillating crystals to meet these requirements.
On the one hand, this is because 32,768 kHz are only available with a frequency tolerance of ±10ppm at +25°C, on the other hand, the temperature stability over a temperature range of -40/+85°C is more then -180 ppm. Moreover, ageing of approx. ±30 ppm after 10 years must be taken into account when calculating accuracy. In the worst case, a 32,768 kHz crystal has a maximum frequency stability of +40/-220 ppm (including adjustment at +25°C, temperature stability and ageing after 10 years). External circuit capacitance must be able to compensate any systematic frequency offset caused by the internal capacitance of the oscillator stage of the IC to be synchronised and by stray capacitance. The selection of a layout without external circuit capacitance for the 32,768 crystal involves a great risk because the accuracy of the 32,768 crystal can neither be corrected nor adjusted to suddenly changing PCB conditions during series production. Initially, the intersection angle for the 32,768 crystal was designed for optimal accuracy in wristwatches, and not for most of the applications for which it is used nowadays.
In order to meet the highly accurate time requirements, we as a clocking specialist offer the series ULPPO ultra low power 32,768 kHz oscillator. This oscillator can be operated with each voltage within a VDD range of 1.5 to 3.63 VDC. The specified current consumption is 0.99 µA. The temperature stability of ULPPOs is ±5 ppm over a temperature range of -40/+85°C. Frequency stability (delivery accuracy plus temperature stability) is ±10 ppm, and ageing after 20 years is ±2 ppm. Thus the maximum overall stability of ULPPOs is ±12 ppm including the ageing after 10 years. These are industry best parameters.
No external circuit capacitance is required for the circuiting of the ultra small housing (housing area: 1.2 mm2). The input stage of the IC installed in the ULPPO independently filters the supply voltage. Compared to crystals, ULPPOs save a lot of space on the printed circuit board so that the packing density can be increased, and smaller printed circuit boards can be designed. The adjustment of the amplitude further reduces the power consumption of the ULPPO.
For space calculations, both external circuit capacitances for a crystal on the printed circuit board must also be taken into account. With its two external circuit capacitances, even the smallest 32,768 kHz crystal requires more space on the PCB than ULPPOs do.
Moreover, very small 32,768 kHz crystals have very high resistances which usually cannot be safely overcome by the oscillator stages to be synchronised because the oscillator stages of the ICs or RTCs to be synchronised have very high tolerances as well. Therefore, sudden response time problems in the field might occur which can be ruled out with ULPPOs. Thus, the safe operation of the application is possible with ULPPOs under all circumstances.
Oscillator stages consume a lot of energy to keep a 32,768 crystal oscillating. Usually, the input stage of the MCU can be directly circuited with the LVCMOS signal of the ULPPO (usually Xin). Thus the input stage of the MCU can be deactivated (bypass function) so that the energy saved can be used for the calculation of the system power consumption of the meter. Moreover, ULPPOs are able to synchronise several ICs at a time. Due to the very high accuracy of the ULPPO, less time synchronisations are required, which also saves system power.
Of course, ULPPOs can be used in any applications which require miniaturised ultra low power 32,768 kHz oscillators such as smartphones, tablets, GPS, fitness watches, health and wellness applications, wireless keyboards, timing systems, timing applications, wearables, IoT, home automation, etc. Due to the high degree of accuracy of 32,768 kHz oscillators, the standby time or even the hypernation time in hypernation technology applications can be significantly increased so that a high amount of system power can be saved due to the significantly lower battery-intensive synchronisation cycles. Thus the 32,768 kHz oscillator is the better choice compared to 32,768 kHz crystals. Ultra low power 32,768 kHz oscillators are available with diverse accuracy variations – see also the ULPO-RB1 and -RB2 series.
不断精进自我的优质制造商彼得曼公司,致力于开发大量高质量的产品,随着近几年来,现代计量应用的时间要求大幅提高。现代计量应用的通常要求是7年后时间偏移1小时。应用的工作温度范围也应符合该值。最多1小时。7年后对应于32,768kHz下16ppm绝对值的频率容差。传统的32,768 kHz振荡晶体不再可能满足这些要求。彼得曼32.768K有源晶振的优势.
一方面,这是因为32,768kHz仅在+25°C时具有10ppm的频率容差,另一方面,在-40/+85°C温度范围内的温度稳定性高于-180ppm。此外,老化约。计算精度时,必须考虑10年后的30ppm。最差情况下,32.768K有源晶振的最大频率稳定性为+40/-220 ppm(包括+25°C时的调整、温度稳定性和10年后的老化)。外部电路电容必须能够补偿由要同步的ic振荡器级的内部电容和杂散电容引起的任何系统频率偏移。为32,768晶振选择无外部电路电容的布局包含很大的风险,因为在批量生产期间,32,768晶振的精度既不能校正也不能调整以适应突然变化的PCB条件。最初,32,768英寸晶体的交叉角度是为手表的最佳精度而设计的,而不是为如今使用它的大多数应用而设计的。
彼得曼32.768KHZ晶振系列,彼得曼作为行业顶尖的供应商,一直以来走向技术的最前沿,同时,彼得曼技术公司努力为每一种产品和服务提供最高的质量、安全性、灵活性和客户满意度。作为一个充满活力的市场环境中的创新者,我们致力于成为客户可靠的战略合作伙伴。凭借我们广泛的产品和服务、不折不扣的质量和卓越的性价比,我们支持他们开发具有竞争力的高效应用。
PETERMANN-TECHNIK提供最广泛的32.768kHz解决方案组合,包括石英晶体和硅振荡器以及RTC,推荐用于要求低成本、高性能、高质量产品的所有应用。
32.768kHz石英晶体可在-40/+85°C的标准温度范围内以10至20ppm的频率容差在25°C下交付,根据AECQ200或AECQ100的汽车解决方案可应要求提供。
32.768kHz微型贴片硅振荡器推荐用于电池驱动解决方案,如蓝牙低功耗、物联网、可穿戴设备、RTCs、移动通信、智能计量、智能住宅、商业、医疗和工业应用等。2.0x1.2mm外壳允许使用相同的焊盘布局尺寸直接替换2012系列的石英晶体。
SMD硅32.768kHz振荡器具有独特的超低功耗特性,功耗小于1.0 A,频率容差非常小,从5ppm到10ppm,温度稳定性优于石英晶体和32.768kHz石英晶体振荡器,可提供高精度32.768kHz时钟,功耗极低,价格低廉。
标准外壳尺寸为1.5x0.8mm毫米或2.0x1.2mm毫米,视型号而定。与石英晶体不同,ULPO和ULPPO系列能够通过LVCMOS兼容输出信号为多个IC(MCU、RTC、ble等)提供时钟。)同时,增加了更大的元件放置灵活性,并消除了外部负载电容,从而节省了额外的元件数量、电路板空间和成本(PCB、组装、搬运、库存等)。).例如,与使用32.768kHz石英晶体相比,在BLE解决方案中使用ULPO或ULPO可节省约60%的系统能源。
近几年来,现代计量应用的时间要求大幅提高。现代计量应用的通常要求是7年后时间偏移1小时。应用的工作温度范围也应符合该值。最多1小时。7年后对应于32,768 kHz下16 ppm绝对值的频率容差。传统的32,768 kHz振荡晶体不再可能满足这些要求。
一方面,这是因为32,768kHz仅在+25°C时具有10ppm的频率容差,另一方面,在-40/+85°C温度范围内的温度稳定性高于-180ppm。此外,老化约。计算精度时,必须考虑10年后的30ppm。最差情况下,32,768kHz晶振的最大频率稳定性为+40/-220ppm(包括+25°C时的调整、温度稳定性和10年后的老化)。外部电路电容必须能够补偿由要同步的ic振荡器级的内部电容和杂散电容引起的任何系统频率偏移。为32.768K晶振选择无外部电路电容的布局包含很大的风险,因为在批量生产期间,32,768晶振的精度既不能校正也不能调整以适应突然变化的PCB条件。最初,32,768英寸晶体的交叉角度是为手表的最佳精度而设计的,而不是为如今使用它的大多数应用而设计的。彼得曼32.768KHZ晶振系列.
Microchip 32.768K Clock Oscillator,Microchip公司通过不断塑造品牌价值,以及不断拓宽自身能力边界,从而实现自我价值的最大化,秉持着乐意助人的精神,使得其在创新之路走得十分平坦,随着行业发展的需求增长,Microchip晶振公司开始意识到新的趋势到来,并倾尽所有专注于打磨自身的有源晶振产品,从品质到性能方面,追求产品品质达到极致的完美,并以高于用户满意度为最大的前提,好比这款精心打磨的时钟振荡器,一经推出市场便得到极好的评价。
只有当解决方案使用高精度、快速启动的32.768kHz系统时钟时,才能在休眠模式后重新建立超高速、省电的数据通信或全球定位。在基于休眠技术的电池供电解决方案中采用32.768kHz硅振荡器可以节省50%以上的功率。彼得曼技术公司的专家解释了原因32.768kHz硅振荡器正在电池供电的休眠技术应用中占据主导地位,以及它们为用户提供了哪些优势。
许多终端产品采用休眠技术,包括可穿戴设备、面向商业、工业、汽车和物联网应用的基于蓝牙低能耗(BLE)的通信单元、GPS(商业和汽车)、M2M通信、个人追踪器和医疗患者监护系统、物联网、智能计量、家庭自动化、无线等等。
冬眠技术是如何工作的?
休眠技术主要用于定位应用和终端设备中,这些设备通过蓝牙低能量(BLE)与单独的接收器交换收集的数据。为了大大延长电池寿命,这些设备中的高耗电电路部分,如用于数据传输和定位的IC,会尽可能地进入省电睡眠模式。一旦用户搜索到新的目的地,或者想要通过蓝牙低能耗传输数据,这些休眠部件就必须被再次唤醒,并尽快恢复到高功率工作模式(图1)。
极短的唤醒时间可节省50%的系统能源
为了实现高速、高能效的数据通信,32.768kHz系统时钟必须非常精确,以便应用能够高速运行图1所示的过程,然后立即返回休眠模式。
不精确的系统时钟会导致图1所示的功耗过程根据需要重复多次,直到数据从发射器发送到接收器,比如从可穿戴设备发送到智能手机。这种重复增加了功率消耗,从而大大缩短了电池寿命。然而,当提供高精度32.768K有源晶振参考频率时,发射器和接收器的系统时钟之间的这些恒定功耗同步变得多余。超长的独立运行时间是发射机单元取得市场成功的关键因素。不能长时间运行的病人监护设备很难被接受。用户会奇怪为什么他需要反复给设备充电或更换电池,并且不会向他人推荐该产品,甚至会在网上发布负面评论。Microchip 32.768K Clock Oscillator.
高精度系统时钟在GPS应用中还有另一个省电优势:它可以延长休眠周期,同时仍然保持不到一秒的快速启动。
32.768 kHz石英晶体和石英晶体振荡器与32.768kHz超低功率振荡器有何不同
由于石英切割,32.768 kHz石英晶体的温度稳定性(与MHz石英晶体不同)不能通过改变切割角度来缩小。在-40°C至+85°C的温度范围内,32.768 kHz石英晶体的最精确温度稳定性约为-180 ppm(图2);相比之下,MHz石英晶体的折射率为15 ppm。
日本电波工业株式会社NDK晶振成立至今,已经成为提供电子业必不可少的,在丰富用途被广泛使用的晶体元器件产品以及应用水晶技术的传感器等新的高附加价值产品的频率综合生产厂家,正以企业的继续成长为目标而努力着,主要经营范围:石英晶体谐振器,石英晶体振荡器等晶体元器件应用器件,人工水晶及芯片等的晶体相关产品的制造与销售.下面介绍一款的耐高温的NZ2520SHA晶振产品.