彼得曼32.768K有源晶振的优势,Time requirements in modern metering applications have massively increased in the last few years. The usual requirement in modern metering applications is a time offset of 1 hour after 7 years. It should also be possible for the operating temperature range of the application to comply with this value. 1 hour max. after 7 years corresponds to a frequency tolerance of ±16 ppm absolute at 32,768 kHz. It is no longer possible for conventional 32,768 kHz oscillating crystals to meet these requirements.
On the one hand, this is because 32,768 kHz are only available with a frequency tolerance of ±10ppm at +25°C, on the other hand, the temperature stability over a temperature range of -40/+85°C is more then -180 ppm. Moreover, ageing of approx. ±30 ppm after 10 years must be taken into account when calculating accuracy. In the worst case, a 32,768 kHz crystal has a maximum frequency stability of +40/-220 ppm (including adjustment at +25°C, temperature stability and ageing after 10 years). External circuit capacitance must be able to compensate any systematic frequency offset caused by the internal capacitance of the oscillator stage of the IC to be synchronised and by stray capacitance. The selection of a layout without external circuit capacitance for the 32,768 crystal involves a great risk because the accuracy of the 32,768 crystal can neither be corrected nor adjusted to suddenly changing PCB conditions during series production. Initially, the intersection angle for the 32,768 crystal was designed for optimal accuracy in wristwatches, and not for most of the applications for which it is used nowadays.
In order to meet the highly accurate time requirements, we as a clocking specialist offer the series ULPPO ultra low power 32,768 kHz oscillator. This oscillator can be operated with each voltage within a VDD range of 1.5 to 3.63 VDC. The specified current consumption is 0.99 µA. The temperature stability of ULPPOs is ±5 ppm over a temperature range of -40/+85°C. Frequency stability (delivery accuracy plus temperature stability) is ±10 ppm, and ageing after 20 years is ±2 ppm. Thus the maximum overall stability of ULPPOs is ±12 ppm including the ageing after 10 years. These are industry best parameters.
No external circuit capacitance is required for the circuiting of the ultra small housing (housing area: 1.2 mm2). The input stage of the IC installed in the ULPPO independently filters the supply voltage. Compared to crystals, ULPPOs save a lot of space on the printed circuit board so that the packing density can be increased, and smaller printed circuit boards can be designed. The adjustment of the amplitude further reduces the power consumption of the ULPPO.
For space calculations, both external circuit capacitances for a crystal on the printed circuit board must also be taken into account. With its two external circuit capacitances, even the smallest 32,768 kHz crystal requires more space on the PCB than ULPPOs do.
Moreover, very small 32,768 kHz crystals have very high resistances which usually cannot be safely overcome by the oscillator stages to be synchronised because the oscillator stages of the ICs or RTCs to be synchronised have very high tolerances as well. Therefore, sudden response time problems in the field might occur which can be ruled out with ULPPOs. Thus, the safe operation of the application is possible with ULPPOs under all circumstances.
Oscillator stages consume a lot of energy to keep a 32,768 crystal oscillating. Usually, the input stage of the MCU can be directly circuited with the LVCMOS signal of the ULPPO (usually Xin). Thus the input stage of the MCU can be deactivated (bypass function) so that the energy saved can be used for the calculation of the system power consumption of the meter. Moreover, ULPPOs are able to synchronise several ICs at a time. Due to the very high accuracy of the ULPPO, less time synchronisations are required, which also saves system power.
Of course, ULPPOs can be used in any applications which require miniaturised ultra low power 32,768 kHz oscillators such as smartphones, tablets, GPS, fitness watches, health and wellness applications, wireless keyboards, timing systems, timing applications, wearables, IoT, home automation, etc. Due to the high degree of accuracy of 32,768 kHz oscillators, the standby time or even the hypernation time in hypernation technology applications can be significantly increased so that a high amount of system power can be saved due to the significantly lower battery-intensive synchronisation cycles. Thus the 32,768 kHz oscillator is the better choice compared to 32,768 kHz crystals. Ultra low power 32,768 kHz oscillators are available with diverse accuracy variations – see also the ULPO-RB1 and -RB2 series.
不断精进自我的优质制造商彼得曼公司,致力于开发大量高质量的产品,随着近几年来,现代计量应用的时间要求大幅提高。现代计量应用的通常要求是7年后时间偏移1小时。应用的工作温度范围也应符合该值。最多1小时。7年后对应于32,768kHz下16ppm绝对值的频率容差。传统的32,768 kHz振荡晶体不再可能满足这些要求。彼得曼32.768K有源晶振的优势.
一方面,这是因为32,768kHz仅在+25°C时具有10ppm的频率容差,另一方面,在-40/+85°C温度范围内的温度稳定性高于-180ppm。此外,老化约。计算精度时,必须考虑10年后的30ppm。最差情况下,32.768K有源晶振的最大频率稳定性为+40/-220 ppm(包括+25°C时的调整、温度稳定性和10年后的老化)。外部电路电容必须能够补偿由要同步的ic振荡器级的内部电容和杂散电容引起的任何系统频率偏移。为32,768晶振选择无外部电路电容的布局包含很大的风险,因为在批量生产期间,32,768晶振的精度既不能校正也不能调整以适应突然变化的PCB条件。最初,32,768英寸晶体的交叉角度是为手表的最佳精度而设计的,而不是为如今使用它的大多数应用而设计的。
为了满足高度精确的时间要求,作为计时专家,我们推出了ULPPO系列超低功耗32,768 kHz振荡器。该石英晶体振荡器可以在1.5到3.63 VDC的VDD范围内的每个电压下工作。额定功耗为0.99 A。在-40/+85°c的温度范围内,ULPPOs的温度稳定性为±5 ppm。频率稳定性(输送精度加上温度稳定性)为10 ppm,20年后的老化为±2 ppm。因此,ULPPOs的最大总稳定性为12 ppm,包括10年后的老化。这些是行业最佳参数。
超小型外壳的电路不需要外部电路电容(外壳面积:1.2 mm2).ULPPO中安装的IC输入级独立过滤电源电压。与晶体相比,ULPPOs节省了印刷电路板上的大量空间,因此可以增加封装密度,并且可以设计更小的印刷电路板。幅度的调整进一步降低了ULPPO的功耗。
对于空间计算,还必须考虑印刷电路板上晶体的两个外部电路电容。由于有两个外部电路电容,即使最小的32,768kHz晶振也比ULPPOs需要更多的PCB空间。
此外,非常小的32,768 kHz晶体具有非常高的电阻,这通常不能被要同步的振荡器级安全地克服,因为要同步的IC或RTC的振荡器级也具有非常高的容差。因此,现场可能会出现突然的响应时间问题,这可以通过ULPPOs排除。因此,在任何情况下,使用ULPPOs都可以安全运行应用程序。
振荡器级消耗大量能量来保持32,768有源晶体振荡器。通常,MCU的输入级可以直接与ULPPO的LVCMOS信号(通常为X在).因此,可以停用MCU的输入级(旁路功能),以便节省的能量可以用于计算电表的系统功耗。此外,ULPPOs能够同时同步多个IC。由于ULPPO的精度非常高,因此需要的时间同步更少,这也节省了系统功率。
当然,ULPPOs可用于任何需要小型化超低功耗32,768 kHz振荡器的应用,如智能手机、平板电脑、GPS、健身手表、健康和保健应用、无线键盘、计时系统、计时应用、可穿戴设备、物联网、家庭自动化等。由于32,768 kHz振荡器的高度准确性,待机时间或甚至超高技术应用中的超高时间可以显著增加,从而由于显著降低的电池密集型同步周期可以节省大量系统功率。因此,与32,768 kHz晶体相比,32,768 kHz振荡器是更好的选择。超低功耗32,768 kHz振荡器具有不同的精度变化——也可参见ULPO-RB1和-RB2系列。