包括英特尔、ARM、三星和高通在内的主要IC OEM公司都积极致力于将工艺几何尺寸降低到10nm甚至7nm的FinFET架构的开发。
艾博康公司推出创新型的无源晶振吸引用户的关注点ABM11-24.000MHZ-D2X-T3,这一行业趋势背后的主要驱动力与总消费的减少有关动力,同时提高整体性能。这一努力旨在促进电池驱动的终端解决方案(消费、医疗、物联网、工业等)的实际实施,在功能丰富的环境中需要极低的功耗,低功耗对于无源晶体来说切入点更加高。然而,这些进步显著地影响了传统的时钟电路。
Manufacturer Part Number 原厂编码 | Manufacturer厂家 | Series型号 | Type 系列 | Frequency频率 | Package / Case包装/封装 |
ABM10-26.000MHZ-7-A15-T | Abracon晶振 | ABM10 | MHz Crystal | 26MHz | 4-SMD, No Lead |
ABM10-40.000MHZ-8-7-A15-T | Abracon晶振 | ABM10 | MHz Crystal | 40MHz | 4-SMD, No Lead |
ABM3B-28.63636MHZ-10-1-U-T | Abracon晶振 | ABM3B | MHz Crystal | 28.63636MHz | 4-SMD, No Lead |
ABM3B-40.000MHZ-10-1-U-T | Abracon晶振 | ABM3B | MHz Crystal | 40MHz | 4-SMD, No Lead |
ABM3B-12.800MHZ-10-1-U-T | Abracon晶振 | ABM3B | MHz Crystal | 12.8MHz | 4-SMD, No Lead |
ABM3-40.000MHZ-D2Y-F-T | 艾博康晶振 | ABM3 | MHz Crystal | 40MHz | 2-SMD, No Lead |
ABM3B-24.576MHZ-10-1-U-T | Abracon晶振 | ABM3B | MHz Crystal | 24.576MHz | 4-SMD, No Lead |
ABM3B-13.000MHZ-10-1-U-T | Abracon晶振 | ABM3B | MHz Crystal | 13MHz | 4-SMD, No Lead |
ABM9-12.000MHZ-10-D1Y-T | Abracon晶振 | ABM9 | MHz Crystal | 12MHz | 4-SMD, No Lead |
ABS25-60.000KHZ-T | Abracon晶振 | ABS25 | kHz Crystal (Tuning Fork) | 60kHz | 4-SOJ, 5.50mm pitch |
ABS25-100.000KHZ-T | Abracon晶振 | ABS25 | kHz Crystal (Tuning Fork) | 100kHz | 4-SOJ, 5.50mm pitch |
ABM8-37.500MHZ-12-1-U-T | Abracon晶振 | ABM8 | MHz Crystal | 37.5MHz | 4-SMD, No Lead |
ABM11-24.000MHZ-D2X-T3 | Abracon晶振 | ABM11 | MHz Crystal | 24MHz | 4-SMD, No Lead |
ABM11-27.000MHZ-D2X-T3 | Abracon晶振 | ABM11 | MHz Crystal | 27MHz | 4-SMD, No Lead |
ABM10-48.000MHZ-E20-T | Abracon晶振 | ABM10 | MHz Crystal | 48MHz | 4-SMD, No Lead |
ABM11-26.000MHZ-D2X-T3 | Abracon晶振 | ABM11 | MHz Crystal | 26MHz | 4-SMD, No Lead |
ABM11-38.400MHZ-D2X-T3 | Abracon晶振 | ABM11 | MHz Crystal | 38.4MHz | 4-SMD, No Lead |
Abracon发布编码ABM11-24.000MHZ-D2X-T3是一款无源晶振,石英晶振,2.0 x 1.6 x 0.59mm超微型封装。适用于符合RoHS标准的回流。接缝密封陶瓷包装与金属盖保证高精度、高可靠性,移动电话,寻呼机。通信和测试设备。高密度应用,PCMCIA和无线应用。
The IoT market is on an explosive pace of growth with industry projections of $470 billion for IoT related hardware, software, and other comprehensive solutions. The current installed base of 15.4 billion devices is expected to exceed 30.7 billion by 2020.
Major IC OEM’s including Intel, ARM, Samsung and QUALCOMM are actively engaged in the development of reduced process geometries down to 10nm and even 7nm FinFET architectures.
The primary driving force behind this industry trend is related to the reduction in total consumed
power, while improving overall performance. This effort is being undertaken to facilitate the practical implementation of battery powered end-solutions (consumer, medical, IoT, industrial, etc.), requiring extremely low power in a feature-rich environment. These advancements, however, have significantly impacted the traditional clocking circuit.
As the low power operation becomes paramount, the current mirrors biasing the inverter amplifier stage in the Pierce Oscillator loop are “starving” the amplifier. This approach has a significant impact on the transconductance of the inverter amplifier block which, in-turn, has a profound effect on the forward gain margin (GM) of the closed-loop oscillator circuit.