FMI晶振FMXMC16S118HJA-26.000MHZ-CM频率控制元器件详情
晶体
频率管理国际公司生产高质量的通孔石英晶体,SMD贴片晶振(表面贴装)封装。通信晶体、微处理器晶体和手表水晶是我们的产品之一。应用包括计算机外围设备,工业仪器仪表、石油钻探、地热、商业空间、局域网/广域网、光学网络、过程控制、电信和无线产品。我们提供各种各样的标准和定制石英晶体,商业、工业、军事、高可靠性、高温和恶劣应用。彼得曼32.768K有源晶振的优势,Time requirements in modern metering applications have massively increased in the last few years. The usual requirement in modern metering applications is a time offset of 1 hour after 7 years. It should also be possible for the operating temperature range of the application to comply with this value. 1 hour max. after 7 years corresponds to a frequency tolerance of ±16 ppm absolute at 32,768 kHz. It is no longer possible for conventional 32,768 kHz oscillating crystals to meet these requirements.
On the one hand, this is because 32,768 kHz are only available with a frequency tolerance of ±10ppm at +25°C, on the other hand, the temperature stability over a temperature range of -40/+85°C is more then -180 ppm. Moreover, ageing of approx. ±30 ppm after 10 years must be taken into account when calculating accuracy. In the worst case, a 32,768 kHz crystal has a maximum frequency stability of +40/-220 ppm (including adjustment at +25°C, temperature stability and ageing after 10 years). External circuit capacitance must be able to compensate any systematic frequency offset caused by the internal capacitance of the oscillator stage of the IC to be synchronised and by stray capacitance. The selection of a layout without external circuit capacitance for the 32,768 crystal involves a great risk because the accuracy of the 32,768 crystal can neither be corrected nor adjusted to suddenly changing PCB conditions during series production. Initially, the intersection angle for the 32,768 crystal was designed for optimal accuracy in wristwatches, and not for most of the applications for which it is used nowadays.
In order to meet the highly accurate time requirements, we as a clocking specialist offer the series ULPPO ultra low power 32,768 kHz oscillator. This oscillator can be operated with each voltage within a VDD range of 1.5 to 3.63 VDC. The specified current consumption is 0.99 µA. The temperature stability of ULPPOs is ±5 ppm over a temperature range of -40/+85°C. Frequency stability (delivery accuracy plus temperature stability) is ±10 ppm, and ageing after 20 years is ±2 ppm. Thus the maximum overall stability of ULPPOs is ±12 ppm including the ageing after 10 years. These are industry best parameters.
No external circuit capacitance is required for the circuiting of the ultra small housing (housing area: 1.2 mm2). The input stage of the IC installed in the ULPPO independently filters the supply voltage. Compared to crystals, ULPPOs save a lot of space on the printed circuit board so that the packing density can be increased, and smaller printed circuit boards can be designed. The adjustment of the amplitude further reduces the power consumption of the ULPPO.
For space calculations, both external circuit capacitances for a crystal on the printed circuit board must also be taken into account. With its two external circuit capacitances, even the smallest 32,768 kHz crystal requires more space on the PCB than ULPPOs do.
Moreover, very small 32,768 kHz crystals have very high resistances which usually cannot be safely overcome by the oscillator stages to be synchronised because the oscillator stages of the ICs or RTCs to be synchronised have very high tolerances as well. Therefore, sudden response time problems in the field might occur which can be ruled out with ULPPOs. Thus, the safe operation of the application is possible with ULPPOs under all circumstances.
Oscillator stages consume a lot of energy to keep a 32,768 crystal oscillating. Usually, the input stage of the MCU can be directly circuited with the LVCMOS signal of the ULPPO (usually Xin). Thus the input stage of the MCU can be deactivated (bypass function) so that the energy saved can be used for the calculation of the system power consumption of the meter. Moreover, ULPPOs are able to synchronise several ICs at a time. Due to the very high accuracy of the ULPPO, less time synchronisations are required, which also saves system power.
Of course, ULPPOs can be used in any applications which require miniaturised ultra low power 32,768 kHz oscillators such as smartphones, tablets, GPS, fitness watches, health and wellness applications, wireless keyboards, timing systems, timing applications, wearables, IoT, home automation, etc. Due to the high degree of accuracy of 32,768 kHz oscillators, the standby time or even the hypernation time in hypernation technology applications can be significantly increased so that a high amount of system power can be saved due to the significantly lower battery-intensive synchronisation cycles. Thus the 32,768 kHz oscillator is the better choice compared to 32,768 kHz crystals. Ultra low power 32,768 kHz oscillators are available with diverse accuracy variations – see also the ULPO-RB1 and -RB2 series.
不断精进自我的优质制造商彼得曼公司,致力于开发大量高质量的产品,随着近几年来,现代计量应用的时间要求大幅提高。现代计量应用的通常要求是7年后时间偏移1小时。应用的工作温度范围也应符合该值。最多1小时。7年后对应于32,768kHz下16ppm绝对值的频率容差。传统的32,768 kHz振荡晶体不再可能满足这些要求。彼得曼32.768K有源晶振的优势.
一方面,这是因为32,768kHz仅在+25°C时具有10ppm的频率容差,另一方面,在-40/+85°C温度范围内的温度稳定性高于-180ppm。此外,老化约。计算精度时,必须考虑10年后的30ppm。最差情况下,32.768K有源晶振的最大频率稳定性为+40/-220 ppm(包括+25°C时的调整、温度稳定性和10年后的老化)。外部电路电容必须能够补偿由要同步的ic振荡器级的内部电容和杂散电容引起的任何系统频率偏移。为32,768晶振选择无外部电路电容的布局包含很大的风险,因为在批量生产期间,32,768晶振的精度既不能校正也不能调整以适应突然变化的PCB条件。最初,32,768英寸晶体的交叉角度是为手表的最佳精度而设计的,而不是为如今使用它的大多数应用而设计的。
揭秘领先全球AEL水晶与Abracon之间的关系,Founded in 1960, the AEL Crystal brand offers a range of innovative timing and frequency components. AEL provides solutions across frequency control technologies including quartz crystals, oscillators, and resonators.
AEL水晶品牌成立于1960年,提供一系列创新的计时和频率组件。AEL提供跨频率控制技术的解决方案,包括压电石英晶体、振荡器和谐振器。
Abracon LLC(Abracon)宣布已完成对AEL晶体有限公司的收购,这是一家总部位于英国萨里的私营频率控制供应商。
“我们很高兴将这两家频率控制公司联合在一起,因为我们增加了一个非常有知识的AEL团队,增强了我们在欧洲市场的存在,”说迈克·卡拉布里亚,Abracon的总裁兼首席执行官。“Abracon的一个关键战略目标是在欧洲建立一个带有服务中心的硬站点。AEL的加入实现了这一目标,因为英国AEL公司总部将转变为Abracon欧洲服务中心。
收购AEL晶体后,Abracon将能够进一步扩大其频率控制和定时设备组合,并扩大Abracon在欧洲市场的实体存在。将AEL的石英晶振产品系列整合到Abracon现有的产品组合中,将增强Abracon提供最新技术设计支持和全球供应链灵活性的能力,以解决客户当今的独特挑战。
“我们AEL水晶有限公司很高兴成为Abracon大家庭的一员加里·拉姆斯代尔,AEL董事总经理。“我们早就认识到,AEL晶振公司和Abracon公司拥有共同的客户服务核心价值观、无与伦比的频率控制产品系列和可靠的声誉。我们期待将这些原则引入欧洲市场。”
Abracon将积极支持AEL产品线的整合,以及客户所熟知的卓越客户服务和可靠性。
Abracon offers in-system tuning services for patch and chip antennas. This takes the guess work out of RF verification while offering corrective measures. It can maximize system efficiency with benefits such as, extended RF range, improved sensitivity and reduced power consumption of a transmit range.
Abracon晶振为贴片天线和芯片天线提供系统内调谐服务。这在提供纠正措施的同时,减少了射频验证的猜测工作。它可以最大限度地提高系统效率,具有扩展射频范围、提高灵敏度和降低发射范围功耗等优点。超越未来解决方案的性能、尺寸、功率和可靠性要求的晶体、振荡器和谐振器产品。
CMOS输出压控振荡器为何能在瑞斯克晶振大放异彩?CVHD-037X-125,Crystek Corporation® has been providing frequency products since 1958, including quartz crystals, XOs (Clock Oscillators), TCXOs (Temperature Compensated Crystal Oscillators), VCOs (Voltage Controlled Oscillators), and VCXOs (Voltage Controlled Crystal Oscillators). Crystek operates two divisions dedicated to frequency control. Crystek Crystals is dedicated to the development and manufacture of frequency products using quartz-based resonators.
Crystek Corporation®自1958年以来一直提供频率产品,包括石英晶体,xo(时钟振荡器),OSC振荡器,tcxo(温度补偿晶体振荡器),VCOs(压控振荡器)和vcxo(压控晶体振荡器)。Crystek有两个部门致力于频率控制。Crystek Crystals致力于开发和制造使用石英谐振器的频率产品。
RMS抖动的差分振荡器ECX2-LMV-3CN-156.250-TR为测试测量打开新通道,ECS晶振公司作为一家在频率元器件行业有着十分丰富经验的制造商,十分擅长于开发有源晶振产品,在开发方面的技术实属无人可及,精湛的工艺,高超的技术,一一为ECS公司增添辉煌的一笔,作为一家遍布全球的跨国公司,为了将公司发展成为一个多样化和包容性的全球供应链。我们相信多样性激发创新,并允许供应商开发更多创新产品和解决方案服务我们的业务需求。