手机站手机站 在线留言 收藏本站 网站地图 会员登录 会员注册

欢迎来到深圳康比电子有限公司官方网站

24小时加盟热线0755-27876201
当前位置: 首页 » 新闻资讯
  • 1924-02

    NIC新产品发布LC滤波器
    NIC新产品发布LC滤波器
    产品:LC滤波器,LC滤波器功能:
    频率范围:50KHz至20000MHz
    带宽:2%到150%
    带通、低通、高通、带阻配置
    独特的传递函数(高斯、高斯至6dB、高斯至12dB、贝塞尔)
    延迟、相位、幅度均衡
    所有环境条件下的幅度、相位匹配(1比N)
    60dB匹配的取消率大于0.01%
    薄型(《0.08英寸),紧凑设计
    SMT(密封+非密封)、连接器化通孔封装配置
    高功率处理(平均功率高达300瓦+峰值功率2千瓦)
    NIC的产品设计高度可定制,允许客户定义封装/连接器配置、密封性和特定应用兼容性(军事、空间等)
    查看详情
  • 1724-02

    Pletronics新的TCXO系列

    Pletronics新TCXO系列

    TCXO的崛起标志着精密电子领域的一个重要里程碑。凭借其提供更小封装的能力、在宽温度范围内的卓越频率稳定性和卓越的相位噪声性能,TCXO贴片晶振正在重新定义准确性和可靠性的标准。随着行业不断突破创新的边界,TCXO证明了人类的独创性,提升了依赖完美时序和信号同步的设备和系统的潜力。

    查看详情
  • 0424-01

    Abracon航空航天和国防产品详情

    Abracon航空航天和国防产品详情
    Abracon是一家值得信赖的领先和创新电子元件供应商,包括频率控制、定时、电源、磁性、射频和天线解决方案。

    Abracon是许多航空航天和国防领域使用的零部件的全球供应商。随着在空中、海上、陆地、太空以及个人设备中的部署,该行业要求最高的性能和系统可靠性。
    设计需要对突然的温度变化、振动、灰尘和湿度具有鲁棒性。同时,最高的技术性能对于满足军事和航空标准至关重要。应用包括雷达系统、无线电通信、电子战系统、定位和制导以及监视和成像。
    NEL频率控制公司业界领先的超低相位噪声OCXO和TCXO晶振精密频率控制解决方案经过优化,采用不受ITAR限制、符合RoHS标准、符合MIL-Spec和COTS(商用现货)的解决方案,以最小的封装尺寸实现最高的性能。

    查看详情
  • 2823-12

    彼得曼32.768K有源晶振的优势

    彼得曼32.768K有源晶振的优势,Time requirements in modern metering applications have massively increased in the last few years. The usual requirement in modern metering applications is a time offset of 1 hour after 7 years. It should also be possible for the operating temperature range of the application to comply with this value. 1 hour max. after 7 years corresponds to a frequency tolerance of ±16 ppm absolute at 32,768 kHz. It is no longer possible for conventional 32,768 kHz oscillating crystals to meet these requirements.

    On the one hand, this is because 32,768 kHz are only available with a frequency tolerance of ±10ppm at +25°C, on the other hand, the temperature stability over a temperature range of -40/+85°C is more then -180 ppm. Moreover, ageing of approx. ±30 ppm after 10 years must be taken into account when calculating accuracy. In the worst case, a 32,768 kHz crystal has a maximum frequency stability of +40/-220 ppm (including adjustment at +25°C, temperature stability and ageing after 10 years). External circuit capacitance must be able to compensate any systematic frequency offset caused by the internal capacitance of the oscillator stage of the IC to be synchronised and by stray capacitance. The selection of a layout without external circuit capacitance for the 32,768 crystal involves a great risk because the accuracy of the 32,768 crystal can neither be corrected nor adjusted to suddenly changing PCB conditions during series production. Initially, the intersection angle for the 32,768 crystal was designed for optimal accuracy in wristwatches, and not for most of the applications for which it is used nowadays.

    In order to meet the highly accurate time requirements, we as a clocking specialist offer the series ULPPO ultra low power 32,768 kHz oscillator. This oscillator can be operated with each voltage within a VDD range of 1.5 to 3.63 VDC. The specified current consumption is 0.99 µA. The temperature stability of ULPPOs is ±5 ppm over a temperature range of -40/+85°C. Frequency stability (delivery accuracy plus temperature stability) is ±10 ppm, and ageing after 20 years is ±2 ppm. Thus the maximum overall stability of ULPPOs is ±12 ppm including the ageing after 10 years. These are industry best parameters.

    No external circuit capacitance is required for the circuiting of the ultra small housing (housing area: 1.2 mm2). The input stage of the IC installed in the ULPPO independently filters the supply voltage. Compared to crystals, ULPPOs save a lot of space on the printed circuit board so that the packing density can be increased, and smaller printed circuit boards can be designed. The adjustment of the amplitude further reduces the power consumption of the ULPPO.

    For space calculations, both external circuit capacitances for a crystal on the printed circuit board must also be taken into account. With its two external circuit capacitances, even the smallest 32,768 kHz crystal requires more space on the PCB than ULPPOs do.

    Moreover, very small 32,768 kHz crystals have very high resistances which usually cannot be safely overcome by the oscillator stages to be synchronised because the oscillator stages of the ICs or RTCs to be synchronised have very high tolerances as well. Therefore, sudden response time problems in the field might occur which can be ruled out with ULPPOs. Thus, the safe operation of the application is possible with ULPPOs under all circumstances.

    Oscillator stages consume a lot of energy to keep a 32,768 crystal oscillating. Usually, the input stage of the MCU can be directly circuited with the LVCMOS signal of the ULPPO (usually Xin). Thus the input stage of the MCU can be deactivated (bypass function) so that the energy saved can be used for the calculation of the system power consumption of the meter. Moreover, ULPPOs are able to synchronise several ICs at a time. Due to the very high accuracy of the ULPPO, less time synchronisations are required, which also saves system power.

    Of course, ULPPOs can be used in any applications which require miniaturised ultra low power 32,768 kHz oscillators such as smartphones, tablets, GPS, fitness watches, health and wellness applications, wireless keyboards, timing systems, timing applications, wearables, IoT, home automation, etc. Due to the high degree of accuracy of 32,768 kHz oscillators, the standby time or even the hypernation time in hypernation technology applications can be significantly increased so that a high amount of system power can be saved due to the significantly lower battery-intensive synchronisation cycles. Thus the 32,768 kHz oscillator is the better choice compared to 32,768 kHz crystals. Ultra low power 32,768 kHz oscillators are available with diverse accuracy variations – see also the ULPO-RB1 and -RB2 series.

    不断精进自我的优质制造商彼得曼公司,致力于开发大量高质量的产品,随着近几年来,现代计量应用的时间要求大幅提高。现代计量应用的通常要求是7年后时间偏移1小时。应用的工作温度范围也应符合该值。最多1小时。7年后对应于32,768kHz下16ppm绝对值的频率容差。传统的32,768 kHz振荡晶体不再可能满足这些要求。彼得曼32.768K有源晶振的优势.

    一方面,这是因为32,768kHz仅在+25°C时具有10ppm的频率容差,另一方面,在-40/+85°C温度范围内的温度稳定性高于-180ppm。此外,老化约。计算精度时,必须考虑10年后的30ppm。最差情况下,32.768K有源晶振的最大频率稳定性为+40/-220 ppm(包括+25°C时的调整、温度稳定性和10年后的老化)。外部电路电容必须能够补偿由要同步的ic振荡器级的内部电容和杂散电容引起的任何系统频率偏移。为32,768晶振选择无外部电路电容的布局包含很大的风险,因为在批量生产期间,32,768晶振的精度既不能校正也不能调整以适应突然变化的PCB条件。最初,32,768英寸晶体的交叉角度是为手表的最佳精度而设计的,而不是为如今使用它的大多数应用而设计的。

    查看详情
  • 0623-11

    格耶品牌SMD晶振如何构建振荡电路?

    格耶品牌SMD晶振如何构建振荡电路?成立至1964年的格耶电子,凭借着自身的努力,一直是频率产品的领先制造商之一,压电石英晶体, 振荡器和陶瓷谐振器.我们从我们的德国总部以及欧洲、亚洲和美国的其他地方。我们非常重视与客户的密切合作从开发阶段开始。这确保了我们从一开始就提供您所需要的东西。

    我们将在整个项目中为您提供专业的设计支持。我们的全球服务包括个人咨询和保证电路的验证交付您从我们这里购买的组件。
    我们的优势之一是在项目的整个生命周期中包括开发阶段已经提供的经验和技术。

    另一个优势是通过我们的支持15年以上的长期项目长期交货保证和生命周期管理.

    例如,我们仍然从一开始就提供SMD晶振,如GEYER KX-C系列,从1992年的一个项目开始就提供。

    我们希望详细了解您的需求,并与您一起完成开发过程。在GEYER Electronic,我们位于慕尼黑附近Planegg的设计和测试中心拥有一支经验丰富的高性能团队。

    利用我们近60年的石英技术知识。

    在设计新的电子电路时,设计工程师通常需要考虑晶体或振荡器是否是合适的选择:有多少空间?频率稳定性的要求是什么?费用是多少用于组件和开发电路的这一部分?
    通过使用晶体,设计工程师可以构建任何振荡电路。那么,为什么经常使用现成的振荡器呢
    即使是在时钟生成这样的简单应用中?显然,原因不仅在于所需的频率稳定性。安全的启动条件以及任何所需环境条件的可靠性也将发挥作用。此外,晶体的使用需要一定的努力来使电路适应晶体并确保可靠的启动电路性能。
    因此,建议少量使用,以节省设计成本并使用更昂贵的振荡器,而不是水晶。通过使用振荡器,不需要像晶体那样的其他外部组件。这样也可以节省空间在PCB上。振荡器很容易获得,例如尺寸为7x5mm SMD或更小(图1)。手册微控制器通常包含如何应用外部振荡器的信息。

    通过无源晶体和分立元件构建自己的振荡电路对于更大的数量或如果IC不使用内部振荡器。可以选择Pierce或Colpitts振荡器。此外,还可以创建振荡器通过反相器电路的适当反馈(图2)。

    大多数微控制器已经包含了时钟电路的基本组件。为了完成电路对于Pierce或Colpitts振荡器类型,只需要一个晶体和其他外部无源元件。应用微控制器的手册描述了必要的细节。为了最大限度地减少任何寄生效应,所有连接从微控制器到晶体电路应保持尽可能短。
    在40MHz及以上的频率下,使用泛音晶体。这些泛音晶体需要一个特殊的过滤器电路,以便抑制基本模式。滤波电路由电容器和电感组成。如果过滤器省略,电路以其基本模式振荡(例如:预期48MHz的第三泛音晶体,电路以16MHz振荡)。带有泛音晶体的振荡器电路应该非常谨慎地进行尺寸和测试。
    如果微控制器配备皮尔斯振荡器配置,晶体将连接到两个电容器,如如图所示。3(C1和C2)。对于4MHz以上的频率,不需要额外的串联电阻器,因为适当的串联电阻器通常将被包括在微控制器的逆变器级内。此外,高欧姆电阻器集成在微控制器内,以调整直流工作电压(图3中为1MΩ)。CS1和CS2包括输入以及微控制器的输出电容以及由PCB上的导电路径贡献的其他电容。通过外部电容器C1使整个电路电容适合于晶体CL的指定负载电容和C2:

    tu 1

    示例:提供CL=16pF。假设CS1=CS2=12pF,外部电容器可以被评估为C1=15pF和C2=27pF。应考虑这些作为后续优化的初始值。C1小于C2,以便提高电路的启动性能。
    如果频率与晶体的实际谐振频率匹配,则晶体电路处于最佳状态。实际晶体在其指定负载电容下的谐振频率可以在其测试记录中找到。
    应在没有来自探头的任何反馈的情况下测量频率。这通常可以通过测量在微控制器的另一个端口处的频率。如果石英晶振晶体被电容器过载,则频率较小比要求的要大(否则会更大)。
    如上所述,具有皮尔斯振荡器配置的微控制器可能需要外部串联电阻器对于低于4MHz的频率。串联电阻器RV将有助于抑制不必要的泛音,并调整内部振荡器到外部pi电路,该电路由C1、C2和晶体组成。串联电阻器RV可评估为如下:RV与电容器C2串联,因此起到低通滤波器的作用(图2)。C2的值应为假如通过选择RV,截止频率fT应在基频和第三泛音之间(方程式2和3)。格耶品牌SMD晶振如何构建振荡电路?

    查看详情
  • 1923-10

    Rakon推出同类最佳的低g灵敏度TCXO
    Rakon推出同类最佳的低g灵敏度TCXO
    Rakon发布了RPT7050LG,低配g-灵敏度TCXO,具有出色的稳定性,封装尺寸为7.0x5.0x1.5mm。保证灵敏度≤0.1ppb/g,它是目前最先进的紧凑型低g-市场上的敏感性TCXO晶振。这个超稳定的TCXO是用Rakon专有的Pluto+2建造的铥ASIC和XMEMS®技术,在-55至105°c的扩展温度范围内具有0.2ppm的稳定性,标称频率范围为10至52MHz。
    保证低g-灵敏度≤0.1 ppb/g和0.2ppm的稳定性,RPT7050LG可以在高振动水平和恶劣的温度环境下工作。应用包括国防、精密全球导航卫星系统、航空电子、电信、实时运动学(RTK)、定位和导航。
    基于Rakon瑞康晶振的XMEMS构建®纳米技术,该产品在频率发生器的核心有一个高Q晶体。这使得TCXO能够产生恒定的高精度频率,并在小尺寸中实现一流的稳定性。
    查看详情
  • 1923-10

    Rakon推出同类最佳的低g灵敏度TCXO
    Rakon推出同类最佳的低g灵敏度TCXO
    Rakon发布了RPT7050LG,低配g-灵敏度TCXO,具有出色的稳定性,封装尺寸为7.0x5.0x1.5mm。保证灵敏度≤0.1ppb/g,它是目前最先进的紧凑型低g-市场上的敏感性TCXO晶振。这个超稳定的TCXO是用Rakon专有的Pluto+2建造的铥ASIC和XMEMS®技术,在-55至105°c的扩展温度范围内具有0.2ppm的稳定性,标称频率范围为10至52MHz。
    保证低g-灵敏度≤0.1 ppb/g和0.2ppm的稳定性,RPT7050LG可以在高振动水平和恶劣的温度环境下工作。应用包括国防、精密全球导航卫星系统、航空电子、电信、实时运动学(RTK)、定位和导航。
    基于Rakon瑞康晶振的XMEMS构建®纳米技术,该产品在频率发生器的核心有一个高Q晶体。这使得TCXO能够产生恒定的高精度频率,并在小尺寸中实现一流的稳定性。
    查看详情
  • 2823-09

    领先同行高加音频晶体打开沉浸感的新维度

    领先同行高加音频晶体打开沉浸感的新维度,Unleashing the Power of Audio Crystals: Elevating Your Sound Experience

    Introduction

    In the realm of audio technology, a fascinating innovation has emerged - audio crystals. These remarkable crystals have revolutionized the way we perceive and experience sound. In this blog post, we will explore the enchanting world of audio crystals, delving into their capabilities, benefits, and how they have transformed our audio landscape.

    Understanding Audio Crystals

    Audio crystals are specialized components that possess unique properties for enhancing sound quality. These crystals are meticulously engineered to resonate at specific frequencies, allowing them to optimize audio performance across various devices and settings. By harnessing the inherent properties of these crystals, audio engineers can unlock the full potential of sound reproduction.

    The Science Behind Audio Crystals

    Audio crystals operate on the principle of piezoelectricity. This phenomenon occurs when certain crystals generate an electric charge under mechanical stress, such as when subjected to vibrations or pressure. By strategically incorporating these crystals into audio systems, the vibrations caused by sound waves can be efficiently converted into electrical signals, resulting in clearer, more immersive sound reproduction.

    Benefits of Audio Crystals

    The integration of audio crystals brings about several noteworthy benefits:

    1. Enhanced Sound Clarity: Audio crystals have the ability to reduce distortion and unwanted vibrations, resulting in improved clarity and precision in sound reproduction.
    2. Extended Frequency Response: With the use of audio crystals, audio systems can achieve a wider frequency response range, enabling the reproduction of delicate details and nuances in music.
    3. Immersive Listening Experience: By leveraging the unique properties of audio crystals, listeners can enjoy a more immersive and captivating sound experience, with enhanced dynamics and spatial imaging.
    4. Versatility and Adaptability: Audio crystals can be incorporated into a wide range of audio devices, including speakers, headphones, and even professional recording equipment, making them highly versatile and adaptable to different applications.

    The Future of Audio Crystals

    As technology continues to advance, the potential of audio crystals is boundless. With ongoing research and development, we can expect even further advancements in sound reproduction, leading to more refined audio experiences for enthusiasts and professionals alike. The integration of audio crystals into emerging technologies, such as virtual reality and augmented reality, holds exciting possibilities for immersive audio in the future.

    In conclusion, audio crystals have emerged as a game-changing innovation in the world of audio technology. By harnessing their unique properties, we can unlock new dimensions of sound quality and immersion. As we continue to explore the endless possibilities of audio crystals, one thing is certain - the future of sound has never sounded brighter.

    释放音频晶体的力量:提升您的声音体验

    介绍

    在音频技术领域,一项引人入胜的创新出现了——音频晶体。这些非凡的晶体彻底改变了我们感知和体验声音的方式。在这篇博文中,我们将探索音频晶体的迷人世界,深入了解它们的功能、优势,以及它们如何改变了我们的音频格局。

    了解音频晶体

    音频晶体是一种特殊的部件,具有增强音质的独特性能。这些压电石英晶体经过精心设计,可在特定频率下共振,从而优化各种设备和设置的音频性能。通过利用这些晶体的固有特性,音频工程师可以释放声音再现的全部潜力。

    音频晶体背后的科学

    音频晶体根据压电原理工作。当某些晶体在机械应力下产生电荷时,例如受到振动或压力时,就会出现这种现象。通过战略性地将这些晶体融入音频系统,声波引起的振动可以有效地转换为电信号,从而实现更清晰、更身临其境的声音再现。

    查看详情
  • 2323-09

    领先同行瑞萨高性能的差分晶振

    领先同行瑞萨高性能的差分晶振,随着人们对数字化转型数字转换的兴趣日益浓厚,物联网在消费电子和工业设备中的使用也在增加。这些物联网端点不仅限于将收集到的数据发送到云端,而且许多还需要执行基于人工智能的程序,从皇家督学的语音识别、触摸键到故障预测。

    自从10年前推出高速大容量闪存的RX630,我们在RX600系列中陆续推出了采用RXv2内核的RX651和采用RXv3内核的RX66N,以及有源晶体振荡器产品,在同类微控制器中性能一直处于行业前列100 . rx 671是RX600系列的新成员。

    RX671在保持与RX651单片机的物联网应用高度兼容性的同时,提升了处理能力、实时性和功能性,可以满足更广泛的用户需求。在这篇博客中,我们想介绍RX671的高性能、多功能和小型化。

    更高的性能

    药方(prescription 的缩写)系列配备了瑞萨电子专有的RX CPU内核RX-core逐年不断进化,如今已经开发出业界领先的5.9 CoreMark/MHz性能的RXv3内核。

    查看详情
每页显示:9条 记录总数:149 | 页数:17     1 2 3 4 5 6 7 8 9 10 ...>    
联系康比电子Contact us

咨询热线:
0755-27876201

手机:137 2874 2863

QQ:577541227

邮箱:kangbidz@163.com

地址:广东深圳市宝安区67区6号庭威工业区

快速通道
pass
+ 快速通道