<b style="font-size: 16px; text-indent: 28px; word-spacing: -1.5px;">康比电子b>该篇文章接下来的讨论适用于宽温度范围的频率标准(即,那些设计为在跨越至少90%的温度范围内工作的标准).在更窄的温度范围内运行的实验室设备比下面的对比设备具有更好的稳定性.商用频率源涵盖几个数量级的精度范围——从简单的X0到<b>石英晶体振荡器b>频率标准.随着精度的提高,功率需求,尺寸和成本也在增加.例如,图33显示了精度和功率要求之间的关系.精确度和成本是相似的
当我们在采购选择<b style="font-size: 16px; text-indent: 28px; word-spacing: -1.5px;">晶振b>频率元件时,首先要了解其详细的各项参数,如频率及负载电容是主要的,负载电容没有选择恰当,那么将无法与产品相匹配.如当订购工作频率为f(如32.768千赫或20兆赫)的振荡器晶体时,通常仅规定工作频率是不够的.虽然晶体将以接近其串联谐振频率的频率振荡,但实际振荡频率通常与该频率略有不同(在"并联谐振电路"中稍高些).
7Z-38.400MBG-T台湾晶技温补晶振7Q-20.000MCN-T小型贴片晶振7Q-16.367667MBG-T石英晶体振荡器7Z-38.400MBG-T<b>温补b><b>晶b><b>体振荡器b>7Q-24.000MCN-T台湾晶技温补晶振7Q-16.367667MBG-T温补晶振7Z-38.400MBG-T温补晶振7Q-20.000MDN-T石英晶体振荡器7N-38.880MBP-T台产TCXO晶振7N-12.800MBP-T台产TCXO晶振7Q-24.000MDN-T温补晶振7N-38.880MBP-T温度补偿晶振7N-12.800MBP-T温度补偿晶振7Z26000001台产TCXO晶振7N-38.880MBP-T温补有源晶振7N-12.800MBP-T温补有源晶振7Q-19.200MBG-T温度补偿晶振7N-19.440MBP-T石英晶振7N-26.000MBP-T石英晶振7Q-26.000MBG-T温补有源晶振7N-19.440MBP-T贴片晶振7N-26.000MBP-T贴片晶振7Q-26.000MBG-T石英晶振7N-19.440MBP-TTXC晶振7N-26.000MBP-TTXC晶振7Q-26.000MBG-T贴片晶振7P-38.400MBP-T小型贴片晶振7L-16.368MCG-T小型贴片晶振7Q-16.3676MCG-TTXC晶振7P-38.400MBP-T台湾晶技温补晶振7L-16.368MCG-T台湾晶技温补晶振7Q-16.367667MCG-T小型贴片晶振7P-38.400MBP-T石英晶体振荡器7L-16.368MCG-T石英晶体振荡器7Q-16.368MCG-T台湾晶技温补晶振7N-24.576MBP-T温补晶振7Q-16.368MBG-T温补晶振7Q-16.369MCG-T<b style="font-size: 16px; text-indent: 28px; word-spacing: -1.5px;">石英晶体振荡器b>7N-24.576MBP-T台产TCXO晶振7Q-16.368MBG-T台产TCXO晶振7Q-19.200MCG-T温补晶振7N-24.576MBP-T温度补偿晶振7Q-16.368MBG-T温度补偿晶振7Q-26.000MCG-T台产TCXO晶振7N-38.400MBP-T温补有源晶振7Q-16.369MBG-T温补有源晶振7Q-12.800MBG-T温度补偿晶振7N-38.400MBP-T石英晶振7Q-16.369MBG-T石英晶振7Q-16.000MBG-T温补有源晶振7N-38.400MBP-T贴片晶振7Q-16.369MBG-T贴片晶振7Q-20.000MBG-T石英晶振
<b>IDT晶振b>公司Integrated Device Technology开发了优化客户应用的系统级解决方案.IDT在射频,高性能定时,存储器接口,实时互连,光互连,无线电源和智能传感器等市场领先的产品是公司广泛的通信,计算,消费,汽车的完整混合信号解决方案和工业部门.IDT总部位于加利福尼亚州圣何塞,在全球设有设计,制造,销售机构和分销合作伙伴.IDT提供业内最广泛,最深入的硅计时产品组合.除了我们广泛选择的缓冲器,时钟合成器和<b style="font-size: 16px; text-indent: 2em;">硅振荡器b>产品之外,我们还提供领先的系统时序解决方案,以解决几乎任何应用中的时序挑战.凭借超过25年的模拟和数字时序经验,我们的产品组合具有最低相位噪声和最高性能的高级时序技术.
<b>石英晶振b>在当今社会上的地位是无法撼动的,生活中处处都需要使用到的一款电子产品元器件.而压电现象的早期历史压电现象被发现后不久,居里夫妇就利用压电效应使几种仪器失效了.其中之一是压电电压表.另一种是压电计,后来成为皮埃尔和玛丽•居里在他们的工作中使用的基本仪器,导致镭的发现.否则,三十多年来,压电效应保持不变实验室的好奇心.进一步的发展必须等待三极管真空管的发明.居里夫妇之后,朗之万教授首次应用了压电效应,下面<b style="font-size: 16px; text-indent: 28px; word-spacing: -1.5px;">康比电子b>介绍一下关于压电石英晶振的发展过程.
<b>时钟振荡器b>简单的说时钟电路就是一个振荡器,给单片机提供一个节拍,单片机执行各种操作必须在这个节拍的控制下才能进行,因此单片机没有时钟电路是不会正常工作的.时钟电路本身是不会控制什么东西,而是你通过程序让单片机根据时钟来做相应的工作.那他是如何工作的接下来<b>深圳b><b>康比电子b>给大家讲解一下时钟集成芯片.时钟集成芯片的工作条件
随着石英晶振的需求量逐渐的增长,其要求和质量等方面的要求也高起来.宝石中的水晶比较熟悉.它们被用于传统工艺品,珠宝,甚至神秘的水晶球.但石英晶体也是现代生活方式的关键对象,它们在智能手机和其他手机,数码相机和汽车电子产品中发挥着至关重要的作用.下面将介绍<b>大河晶振b>的相关技术资料.
振荡器包括放大器和滤波器/耦合网络,它们使用正反馈环路工作.振荡器通常采用密闭式封装.这对于很多应用是非常实用的,例如控制数字处理器的速度,生成时钟信号,创建载波发生器或接收器等多种应用.当前市场上有多个不同类型的振荡器,包括<b style="font-size: 16px; text-indent: 28px; word-spacing: -1.5px;">石英晶体振荡器b>,MEMS,压控晶体振荡器,温度补偿晶体振荡器等.本文将探讨一些主要类型的振荡器,以及业内使用的一些常见术语.
<b>Sb><b>ITIME晶振b>微机电系统(MEMS)kHz振荡器是极小的低功耗32kHz器件,针对移动和其他电池供电应用进行了优化.硅MEMS技术实现了超小尺寸和芯片级封装.这些器件可实现更大的元件布局灵活性,并消除了外部负载电容,从而节省了额外的元件数量和电路板空间.SiTime采用NanoDrive™技术,这是一种工厂可编程输出,可降低电压摆幅,从而最大限度地降低功耗.还提供TempFlatMEMS™技术,该技术可在1.2mmx1.2mm的封装内实现首个32kHz±3百万分之一(ppm)超级TCXO.SiTime的MEMS振荡器包括一个<b style="font-size: 16px; text-indent: 2em;">MEMS谐振器b>和一个可编程模拟电路.kHzMEMS谐振器采用SiTime独特的MEMSFirst™工艺.关键制造步骤是EpiSeal™,在此期间MEMS谐振器的退火温度超过+1000°C.EpiSeal创造了一个极其牢固,干净的真空室来封装MEMS谐振器,可确保最佳的性能和可靠性
<b>时钟晶振b>抖动的对产品的性能影响很大,这是我们都知晓的问题,而且其测量时钟抖动的大小也渐渐地成为现在高速数字电路设计的一个重要组成部分.就目前而言,已经有不少的方法可以可来测量时钟的抖动,抖动的定义是什么,该如何减少时钟振荡器抖动呢,下面<b>康比电子b>带领大家一起了解.
<b>MEMS振荡器b>提供低功耗,小尺寸,高性能和物理稳健性的有吸引力的组合,使其成为众多应用的理想选择,特别是在便携式和可穿戴电子产品中. 他们利用标准半导体制造和封装方法的能力意味着他们的成本和性能将继续提高,确保他们将继续进入传统上保留用于<b>石英晶振b>和陶瓷谐振器的应用.该电子振荡器产生具有精确频率的输出以产生定时脉冲并同步事件.基于微机电系统(MEMS)技术的振荡器将精确的频率生成与低功耗相结合,并且在时钟电路中变得越来越流行.本文<b>深圳b><b>康比电子b>将介绍MEMS技术,MEMS振荡器以及为什么它们在便携式和非便携式应用中取代更传统的解决方案.
晶体谐振器是一种机械振动系统,通过压电效应与电气世界相连,当电感器与晶体串联连接时,操作频率降低.通过增加或改变电抗来改变工作频率的能力允许补偿TCXO中晶体单元的频率与温度变化,并调节电压控制<b style="font-size: 16px; text-indent: 28px; word-spacing: -1.5px;">石英晶体振荡器b>的输出频率; 在两者中,通过改变变容二极管上的电压来改变频率.
<b style="font-family: "Microsoft YaHei"; font-size: 16px; text-indent: 28px; word-spacing: -1.5px;">石英晶振b>此款频率元件被广泛用于各种跟电子相关产品的领域范围内.多年来,频率控制技术的发展一直在稳步推进.虽然许多变化都是技术自然演进的结果,但主要驱动因素是制造能力的提高,降低成本的要求以及对更小尺寸,更大稳定性,降低功耗和更快启动的各种技术要求.
石英在机械,电气和化学性质方面适合制造频率控制装置.石英晶体是从石英棒上切割下来的,石英棒在高压釜中生长.锯片切割石英的角度决定了晶振的许多电学性质.无线应用中常见的晶振切割角度是自动切割.以这种方式制造的<b style="font-size: 16px; text-indent: 2em;">晶振b>在相对较高的频率下可用,表现出优异的频率与温度稳定性,并且成本适中.从1兆赫到1千兆赫以上的基本谐振频率是可能的,但是由于价格和其他限制,大多数AT切割晶体被制造成具有1.8到40兆赫之间的基本频率.AT切割晶体的谐振模式(泛音)大约是基模的奇数倍.为这些泛音指定的晶振通常在24至200兆赫的频率范围内.