FMI晶振FMXMC16S118HJA-26.000MHZ-CM频率控制元器件详情
晶体
频率管理国际公司生产高质量的通孔石英晶体,SMD贴片晶振(表面贴装)封装。通信晶体、微处理器晶体和手表水晶是我们的产品之一。应用包括计算机外围设备,工业仪器仪表、石油钻探、地热、商业空间、局域网/广域网、光学网络、过程控制、电信和无线产品。我们提供各种各样的标准和定制石英晶体,商业、工业、军事、高可靠性、高温和恶劣应用。MTI-milliren石英晶体振荡器老化性能研究
石英晶体振荡器的超长时间老化性能研究
摘要
将提供长达1900天的延长老化测试结果,以深入了解石英晶体振荡器的长期漂移特性。将对结果进行讨论,以显示环境条件和功率开关循环变化的影响。
1.介绍
对几种类型的石英晶体振荡器进行了非常长时间尺度的老化测量,包括AT和SC切割烘箱控制晶体振荡器(OCXO)以及温度补偿晶体振荡器(TCXO)。)尽管每个OCXO在生产中都会老化,但通常只在满足老化率规范所需的时间段内收集数据。由于确定真正的老化性能需要很长的测试时间,TCXOs很少老化。通常无法获得大组振荡器长期老化性能的研究结果。
KVG石英振荡器详情T-53S3D4085KXH-LF-16.000MHz
石英振荡器是一种产生高频交流电压的电路。作为频率决定元件,振荡器包含一个振动石英。石英振荡器以其频率精度和频率稳定性令人信服。在实践中,电路被广泛用作无线电设备、处理器和微控制器的时钟。因此,石英和石英晶体振荡器被认为是数据传输和电信中频率控制的最重要组成部分也就不足为奇了。其主要优点包括高谐振性能、各种振荡器和高频率稳定性。
Macrobizes拥有大量标准频率和规格的成品库存,可立即发货。双重“现货或定制”系统确保了高水平的客户服务。Macrobizes鼓励与客户建立设计和开发合作伙伴关系。对于新技术应用和主要产品更新,我们的客户拥有经验丰富的设计师和生产工程师的优势和安全性,他们了解频率控制产品范围并为他们提供帮助。我们的客户可以随时获得设计、生产和物流运作方面的帮助。Macrobizes是石英晶体、石英晶体振荡器、TCXO、VCXO、OCXO制造商和供应商。我们为您的高质量产品提供可靠的石英晶体。
在现代电子的快节奏世界中,对提高精度和性能的需求至关重要。温补晶体振荡器(TCXOs)已成为技术进步的灯塔,满足了对更小封装、在不同温度下无可挑剔的频率稳定性和卓越相位噪声性能的需求。Pletronics的TCXO设备深入了解TCXO的重要性,以及它们如何彻底改变依赖精确定时和信号同步的行业。
1,更小的包装:重新定义小型化(2.0x1.6mm、2.5x2.0mm、3.2x2.5mm)石英晶振
小型化的竞赛刺激了各行业制造更小、更时尚的设备。TCXO通过在不影响性能的情况下提供紧凑的解决方案,在这一趋势中发挥着关键作用。凭借其固有的高效设计,TCXO被设计成能够紧密地适应现代小工具日益受限的空间。无论是智能家居产品还是无线通信设备,TCXO有源晶振都有助于缩小设备的整体尺寸,确保技术对用户来说既不引人注目又方便。
Pletronics新TCXO系列
TCXO的崛起标志着精密电子领域的一个重要里程碑。凭借其提供更小封装的能力、在宽温度范围内的卓越频率稳定性和卓越的相位噪声性能,TCXO贴片晶振正在重新定义准确性和可靠性的标准。随着行业不断突破创新的边界,TCXO证明了人类的独创性,提升了依赖完美时序和信号同步的设备和系统的潜力。
Abracon航空航天和国防产品详情
Abracon是一家值得信赖的领先和创新电子元件供应商,包括频率控制、定时、电源、磁性、射频和天线解决方案。
Abracon是许多航空航天和国防领域使用的零部件的全球供应商。随着在空中、海上、陆地、太空以及个人设备中的部署,该行业要求最高的性能和系统可靠性。
设计需要对突然的温度变化、振动、灰尘和湿度具有鲁棒性。同时,最高的技术性能对于满足军事和航空标准至关重要。应用包括雷达系统、无线电通信、电子战系统、定位和制导以及监视和成像。
NEL频率控制公司业界领先的超低相位噪声OCXO和TCXO晶振精密频率控制解决方案经过优化,采用不受ITAR限制、符合RoHS标准、符合MIL-Spec和COTS(商用现货)的解决方案,以最小的封装尺寸实现最高的性能。
彼得曼32.768K有源晶振的优势,Time requirements in modern metering applications have massively increased in the last few years. The usual requirement in modern metering applications is a time offset of 1 hour after 7 years. It should also be possible for the operating temperature range of the application to comply with this value. 1 hour max. after 7 years corresponds to a frequency tolerance of ±16 ppm absolute at 32,768 kHz. It is no longer possible for conventional 32,768 kHz oscillating crystals to meet these requirements.
On the one hand, this is because 32,768 kHz are only available with a frequency tolerance of ±10ppm at +25°C, on the other hand, the temperature stability over a temperature range of -40/+85°C is more then -180 ppm. Moreover, ageing of approx. ±30 ppm after 10 years must be taken into account when calculating accuracy. In the worst case, a 32,768 kHz crystal has a maximum frequency stability of +40/-220 ppm (including adjustment at +25°C, temperature stability and ageing after 10 years). External circuit capacitance must be able to compensate any systematic frequency offset caused by the internal capacitance of the oscillator stage of the IC to be synchronised and by stray capacitance. The selection of a layout without external circuit capacitance for the 32,768 crystal involves a great risk because the accuracy of the 32,768 crystal can neither be corrected nor adjusted to suddenly changing PCB conditions during series production. Initially, the intersection angle for the 32,768 crystal was designed for optimal accuracy in wristwatches, and not for most of the applications for which it is used nowadays.
In order to meet the highly accurate time requirements, we as a clocking specialist offer the series ULPPO ultra low power 32,768 kHz oscillator. This oscillator can be operated with each voltage within a VDD range of 1.5 to 3.63 VDC. The specified current consumption is 0.99 µA. The temperature stability of ULPPOs is ±5 ppm over a temperature range of -40/+85°C. Frequency stability (delivery accuracy plus temperature stability) is ±10 ppm, and ageing after 20 years is ±2 ppm. Thus the maximum overall stability of ULPPOs is ±12 ppm including the ageing after 10 years. These are industry best parameters.
No external circuit capacitance is required for the circuiting of the ultra small housing (housing area: 1.2 mm2). The input stage of the IC installed in the ULPPO independently filters the supply voltage. Compared to crystals, ULPPOs save a lot of space on the printed circuit board so that the packing density can be increased, and smaller printed circuit boards can be designed. The adjustment of the amplitude further reduces the power consumption of the ULPPO.
For space calculations, both external circuit capacitances for a crystal on the printed circuit board must also be taken into account. With its two external circuit capacitances, even the smallest 32,768 kHz crystal requires more space on the PCB than ULPPOs do.
Moreover, very small 32,768 kHz crystals have very high resistances which usually cannot be safely overcome by the oscillator stages to be synchronised because the oscillator stages of the ICs or RTCs to be synchronised have very high tolerances as well. Therefore, sudden response time problems in the field might occur which can be ruled out with ULPPOs. Thus, the safe operation of the application is possible with ULPPOs under all circumstances.
Oscillator stages consume a lot of energy to keep a 32,768 crystal oscillating. Usually, the input stage of the MCU can be directly circuited with the LVCMOS signal of the ULPPO (usually Xin). Thus the input stage of the MCU can be deactivated (bypass function) so that the energy saved can be used for the calculation of the system power consumption of the meter. Moreover, ULPPOs are able to synchronise several ICs at a time. Due to the very high accuracy of the ULPPO, less time synchronisations are required, which also saves system power.
Of course, ULPPOs can be used in any applications which require miniaturised ultra low power 32,768 kHz oscillators such as smartphones, tablets, GPS, fitness watches, health and wellness applications, wireless keyboards, timing systems, timing applications, wearables, IoT, home automation, etc. Due to the high degree of accuracy of 32,768 kHz oscillators, the standby time or even the hypernation time in hypernation technology applications can be significantly increased so that a high amount of system power can be saved due to the significantly lower battery-intensive synchronisation cycles. Thus the 32,768 kHz oscillator is the better choice compared to 32,768 kHz crystals. Ultra low power 32,768 kHz oscillators are available with diverse accuracy variations – see also the ULPO-RB1 and -RB2 series.
不断精进自我的优质制造商彼得曼公司,致力于开发大量高质量的产品,随着近几年来,现代计量应用的时间要求大幅提高。现代计量应用的通常要求是7年后时间偏移1小时。应用的工作温度范围也应符合该值。最多1小时。7年后对应于32,768kHz下16ppm绝对值的频率容差。传统的32,768 kHz振荡晶体不再可能满足这些要求。彼得曼32.768K有源晶振的优势.
一方面,这是因为32,768kHz仅在+25°C时具有10ppm的频率容差,另一方面,在-40/+85°C温度范围内的温度稳定性高于-180ppm。此外,老化约。计算精度时,必须考虑10年后的30ppm。最差情况下,32.768K有源晶振的最大频率稳定性为+40/-220 ppm(包括+25°C时的调整、温度稳定性和10年后的老化)。外部电路电容必须能够补偿由要同步的ic振荡器级的内部电容和杂散电容引起的任何系统频率偏移。为32,768晶振选择无外部电路电容的布局包含很大的风险,因为在批量生产期间,32,768晶振的精度既不能校正也不能调整以适应突然变化的PCB条件。最初,32,768英寸晶体的交叉角度是为手表的最佳精度而设计的,而不是为如今使用它的大多数应用而设计的。