Microchip 32.768K Clock Oscillator,Microchip公司通过不断塑造品牌价值,以及不断拓宽自身能力边界,从而实现自我价值的最大化,秉持着乐意助人的精神,使得其在创新之路走得十分平坦,随着行业发展的需求增长,Microchip晶振公司开始意识到新的趋势到来,并倾尽所有专注于打磨自身的有源晶振产品,从品质到性能方面,追求产品品质达到极致的完美,并以高于用户满意度为最大的前提,好比这款精心打磨的时钟振荡器,一经推出市场便得到极好的评价。
只有当解决方案使用高精度、快速启动的32.768kHz系统时钟时,才能在休眠模式后重新建立超高速、省电的数据通信或全球定位。在基于休眠技术的电池供电解决方案中采用32.768kHz硅振荡器可以节省50%以上的功率。彼得曼技术公司的专家解释了原因32.768kHz硅振荡器正在电池供电的休眠技术应用中占据主导地位,以及它们为用户提供了哪些优势。
许多终端产品采用休眠技术,包括可穿戴设备、面向商业、工业、汽车和物联网应用的基于蓝牙低能耗(BLE)的通信单元、GPS(商业和汽车)、M2M通信、个人追踪器和医疗患者监护系统、物联网、智能计量、家庭自动化、无线等等。
冬眠技术是如何工作的?
休眠技术主要用于定位应用和终端设备中,这些设备通过蓝牙低能量(BLE)与单独的接收器交换收集的数据。为了大大延长电池寿命,这些设备中的高耗电电路部分,如用于数据传输和定位的IC,会尽可能地进入省电睡眠模式。一旦用户搜索到新的目的地,或者想要通过蓝牙低能耗传输数据,这些休眠部件就必须被再次唤醒,并尽快恢复到高功率工作模式(图1)。
极短的唤醒时间可节省50%的系统能源
为了实现高速、高能效的数据通信,32.768kHz系统时钟必须非常精确,以便应用能够高速运行图1所示的过程,然后立即返回休眠模式。
不精确的系统时钟会导致图1所示的功耗过程根据需要重复多次,直到数据从发射器发送到接收器,比如从可穿戴设备发送到智能手机。这种重复增加了功率消耗,从而大大缩短了电池寿命。然而,当提供高精度32.768K有源晶振参考频率时,发射器和接收器的系统时钟之间的这些恒定功耗同步变得多余。超长的独立运行时间是发射机单元取得市场成功的关键因素。不能长时间运行的病人监护设备很难被接受。用户会奇怪为什么他需要反复给设备充电或更换电池,并且不会向他人推荐该产品,甚至会在网上发布负面评论。Microchip 32.768K Clock Oscillator.
高精度系统时钟在GPS应用中还有另一个省电优势:它可以延长休眠周期,同时仍然保持不到一秒的快速启动。
32.768 kHz石英晶体和石英晶体振荡器与32.768kHz超低功率振荡器有何不同
由于石英切割,32.768 kHz石英晶体的温度稳定性(与MHz石英晶体不同)不能通过改变切割角度来缩小。在-40°C至+85°C的温度范围内,32.768 kHz石英晶体的最精确温度稳定性约为-180 ppm(图2);相比之下,MHz石英晶体的折射率为15 ppm。