领先全球Renesas quartz crystal oscillator专用智能家居,随着传感器和MCU成本的下降和出货量的飙升,越来越多的组织试图通过将传感器驱动的嵌入式AI添加到他们的产品中来加以利用。
汽车正在推动这一趋势——目前平均每辆非自动驾驶汽车有100个传感器,向30-50个微控制器发送信息,这些微控制器运行大约100万行代码,每天每辆汽车产生1TB的数据。豪华汽车的数量可能是这个数字的两倍,而自动驾驶汽车增加传感器检查的幅度要大得多。
然而,这不仅仅是汽车行业的趋势。随着旋转、往复和其他类型设备的创造者争相增加状态监控和预测支持的有用性,以及大量新的消费产品(从牙刷到真空吸尘器,再到健身监控器)增加仪器和“智能”,工业设备正变得越来越“聪明”。因此,需要更加优质的有源晶体振荡器元器件加以搭配使用。
每个月都会推出越来越多的智能设备。我们现在正处于一个点上,人工智能和机器学习在其异常重要的结构中发现了进入嵌入式设备核心的方法。例如,智能家居照明系统会根据房间内是否有人而自动开关。从各方面来看,这个系统看起来并不时尚。然而,当你考虑所有的事情时,你会明白这个系统实际上是独自决定选择的。鉴于传感器的贡献,微控制器/片上系统(SoC)决定是否开灯。
要同时做到这一切,在边缘、重要的限制范围内,击败多样性,实现实时、麻烦的检测,一点也不简单。在任何情况下,利用当前的工具,整合信号机器学习的新选项(如Reality AI)变得越来越简单。
它们可以定期实现逃避传统工程模型的检测。他们通过显著提高数据的生产率和利用率来战胜变化,从而做到这一点。传统的工程方法通常建立在物理模型上,利用数据来评估参数,而机器学习方法可以自动适应这些模型。他们想出了如何从原始信息中直接识别签名,并利用机器学习(数学)的机制将目标从非目标中分离出来,而不依赖于物理科学。
Mfr Part #
Mfr
Description
Series
Frequency
Output
Voltage - Supply
Frequency Stability
Absolute Pull Range (APR)
XLH738080.000000X
Renesas晶振
XTAL OSC XO 80.0000MHZ HCMOS SMD
XPRESSOFXO-HC73
80 MHz
HCMOS
3.3V
±20ppm
-
XLH738051.840000X
Renesas晶振
XTAL OSC XO 51.8400MHZ HCMOS SMD
XPRESSOFXO-HC73
51.84 MHz
HCMOS
3.3V
±20ppm
-
XLH738050.000000X
Renesas晶振
XTAL OSC XO 50.0000MHZ HCMOS SMD
XPRESSOFXO-HC73
50 MHz
HCMOS
3.3V
±20ppm
-
XLH738048.000000X
Renesas晶振
XTAL OSC XO 48.0000MHZ HCMOS SMD
XPRESSOFXO-HC73
48 MHz
HCMOS
3.3V
±20ppm
-
XLH738040.960000X
Renesas晶振
XTAL OSC XO 40.9600MHZ HCMOS SMD
XPRESSOFXO-HC73
40.96 MHz
HCMOS
3.3V
±20ppm
-
XLH738040.000000X
Renesas晶振
XTAL OSC XO 40.0000MHZ HCMOS SMD
XPRESSOFXO-HC73
40 MHz
HCMOS
3.3V
±20ppm
-
XLH738033.000000X
Renesas晶振
XTAL OSC XO 33.0000MHZ HCMOS SMD
XPRESSOFXO-HC73
33 MHz
HCMOS
3.3V
±20ppm
-
XLH738027.000000X
Renesas晶振
XTAL OSC XO 27.0000MHZ HCMOS SMD
XPRESSOFXO-HC73
27 MHz
HCMOS
3.3V
±20ppm
-
XLH738025.000000X
Renesas晶振
XTAL OSC XO 25.0000MHZ HCMOS SMD
XPRESSOFXO-HC73
25 MHz
HCMOS
3.3V
±20ppm
-
XLH738020.000000X
Renesas晶振
XTAL OSC XO 20.0000MHZ HCMOS SMD
XPRESSOFXO-HC73
20 MHz
HCMOS
3.3V
±20ppm
-
XLH738019.440000X
Renesas晶振
XTAL OSC XO 19.4400MHZ HCMOS SMD
XPRESSOFXO-HC73
19.44 MHz
HCMOS
3.3V
±20ppm
-
XLH738019.200000X
Renesas晶振
XTAL OSC XO 19.2000MHZ HCMOS SMD
XPRESSOFXO-HC73
19.2 MHz
HCMOS
3.3V
±20ppm
-
XLH738018.432000X
Renesas晶振
XTAL OSC XO 18.4320MHZ HCMOS SMD
XPRESSOFXO-HC73
18.432 MHz
HCMOS
3.3V
±20ppm
-
XLH738017.000000X
Renesas晶振
XTAL OSC XO 17.0000MHZ HCMOS SMD
XPRESSOFXO-HC73
17 MHz
HCMOS
3.3V
±20ppm
-
XLH738016.393000X
Renesas晶振
XTAL OSC XO 16.3930MHZ HCMOS SMD
XPRESSOFXO-HC73
16.393 MHz
HCMOS
3.3V
±20ppm
-
XLH738016.000000X
Renesas晶振
XTAL OSC XO 16.0000MHZ HCMOS SMD
XPRESSOFXO-HC73
16 MHz
HCMOS
3.3V
±20ppm
-
XLH738015.360000X
Renesas晶振
XTAL OSC XO 15.3600MHZ HCMOS SMD
XPRESSOFXO-HC73
15.36 MHz
HCMOS
3.3V
±20ppm
-
XLH738012.288000X
Renesas晶振
XTAL OSC XO 12.2880MHZ HCMOS SMD
XPRESSOFXO-HC73
12.288 MHz
HCMOS
3.3V
±20ppm
-
XLH335156.250000I
Renesas晶振
XTAL OSC XO 156.2500MHZ HCMOS
XPRESSOFXO-HC33
156.25 MHz
HCMOS
3.3V
±50ppm
-
XLH335150.000000I
Renesas晶振
XTAL OSC XO 150.0000MHZ HCMOS
XPRESSOFXO-HC33
150 MHz
HCMOS
3.3V
±50ppm
-
XLH536036.571428I
Renesas晶振
OSC 36.571428 MHZ 3.3V SMD
*
-
-
-
-
-
XLH536026.666000I
Renesas晶振
XTAL OSC XO 26.6660MHZ HCMOS SMD晶振
XPRESSOFXO-HC53
26.666 MHz
HCMOS
3.3V
±25ppm
-
XLH726125.000000I
Renesas晶振
XTAL OSC XO 125.0000MHZ HCMOS
XPRESSOFXO-HC72
125 MHz
HCMOS
2.5V
±25ppm
-
XLH736033.333330I
Renesas晶振
XTAL OSC XO 33.33333MHZ HCMOS
XPRESSOFXO-HC73
33.33333 MHz
HCMOS
3.3V
±25ppm
-
XLH736070.000000I
Renesas晶振
XTAL OSC XO 70.0000MHZ HCMOS SMD
XPRESSOFXO-HC73
70 MHz
HCMOS
3.3V
±25ppm
-
XLH736074.250000I
Renesas晶振
XTAL OSC XO 74.2500MHZ HCMOS SMD
XPRESSOFXO-HC73
74.25 MHz
HCMOS
3.3V
±25ppm
-
XLH736065.536000I
Renesas晶振
XTAL OSC XO 65.5360MHZ HCMOS SMD
XPRESSOFXO-HC73
65.536 MHz
HCMOS
3.3V
±25ppm
-
XLH736007.372800I
Renesas晶振
XTAL OSC XO 7.3728MHZ HCMOS SMD
XPRESSOFXO-HC73
7.3728 MHz
HCMOS
3.3V
±25ppm
-
XLH538028.891426X
Renesas晶振
XTAL OSC XO 28.891426MHZ HCMOS
XPRESSOFXO-HC53
28.891426 MHz
HCMOS
3.3V
±20ppm
-
XLH738018.874368X
Renesas晶振
XTAL OSC XO 18.874368MHZ HCMOS
XPRESSOFXO-HC73
18.874368 MHz
HCMOS
3.3V
±20ppm
-
XLH726033.000000I
Renesas晶振
XTAL OSC XO 33.0000MHZ HCMOS SMD
XL
33 MHz
HCMOS
2.5V
±25ppm
-
XLH726060.000000I
Renesas晶振
XTAL OSC XO 60.0000MHZ HCMOS SMD
XL
60 MHz
HCMOS
2.5V
±25ppm
-
XLH336022.118400I
Renesas晶振
XTAL OSC XO 22.1184MHZ HCMOS SMD
XL
22.1184 MHz
HCMOS
3.3V
±25ppm
-
XLH726026.214400I
Renesas晶振
XTAL OSC XO 26.2144MHZ HCMOS SMD
XL
26.2144 MHz
HCMOS
2.5V
±25ppm
-
XLH736038.000000I
Renesas晶振
XTAL OSC XO 38.0000MHZ HCMOS SMD
XL
38 MHz
HCMOS
3.3V
±25ppm
-
XLH536148.511000X
Renesas晶振
XTAL OSC XO 148.5110MHZ HCMOS
XL
148.511 MHz
HCMOS
3.3V
±25ppm
-
XLH736026.214400I
Renesas晶振
XTAL OSC XO 26.2144MHZ HCMOS SMD
XL
26.2144 MHz
HCMOS
3.3V
±25ppm
-
XLH736028.000000I
Renesas晶振
XTAL OSC XO 28.0000MHZ HCMOS SMD
XL
28 MHz
HCMOS
3.3V
±25ppm
-
XLH736033.554400I
Renesas晶振
XTAL OSC XO 33.5544MHZ HCMOS SMD
XL
33.5544 MHz
HCMOS
3.3V
±25ppm
-
XUH518027.120000X
Renesas晶振
CLCC 5.00X3.20X1.10 MM, 2.54MM P
XU
27.12 MHz
HCMOS
1.8V
±20ppm
-
XLH326002.000000I
Renesas晶振
XTAL OSC XO 2.0000MHZ HCMOS SMD
XL
2 MHz
HCMOS
2.5V
±25ppm
-
XLH536121.500000I
Renesas晶振
XTAL OSC XO 121.5000MHZ HCMOS
XL
121.5 MHz
HCMOS
3.3V
±25ppm
-
XLH726026.563828I
Renesas晶振
XTAL OSC XO 26.563828MHZ HCMOS
XL
26.563828 MHz
HCMOS
2.5V
±25ppm
-
XLH736034.368000I
Renesas晶振
XTAL OSC XO 34.3680MHZ HCMOS SMD
XL
34.368 MHz
HCMOS
3.3V
±25ppm
-
XLH536110.000000I
Renesas晶振
XTAL OSC XO 110.0000MHZ HCMOS
XL
110 MHz
HCMOS
3.3V
±25ppm
-
XUH538024.576000X
Renesas晶振
CLCC 5.00X3.20X1.10 MM, 2.54MM P
XU
24.576 MHz
HCMOS
3.3V
±20ppm
-
XLH736039.950000I
Renesas晶振
XTAL OSC XO 39.9500MHZ HCMOS SMD
XL
39.95 MHz
HCMOS
3.3V
±25ppm
-
XLH330148.500000I
Renesas晶振
XTAL OSC XO 148.5000MHZ HCMOS
XL
148.5 MHz
HCMOS
3.3V
±100ppm
-
XLH736027.540000I
Renesas晶振
XTAL OSC XO 27.5400MHZ HCMOS SMD
XL
27.54 MHz
HCMOS
3.3V
±25ppm
-
XLH726026.561172I
Renesas晶振
XTAL OSC XO 26.561172MHZ HCMOS
XL
26.561172 MHz
HCMOS
2.5V
±25ppm
-
XLH736028.450560I
Renesas晶振
XTAL OSC XO 28.45056MHZ HCMOS
XL
28.45056 MHz
HCMOS
3.3V
±25ppm
-
XLH336024.545455I
Renesas晶振
XTAL OSC XO 24.545455MHZ HCMOS
XL
24.545455 MHz
HCMOS
3.3V
±25ppm
-
XLH738092.500000X
Renesas晶振
XTAL OSC XO 92.5000MHZ HCMOS SMD
XL
92.5 MHz
HCMOS
3.3V
±20ppm
-
XLH736048.839200I
Renesas晶振
XTAL OSC XO 48.8392MHZ HCMOS SMD
XL
48.8392 MHz
HCMOS
3.3V
±25ppm
-
XLH736090.136800I
Renesas晶振
XTAL OSC XO 90.1368MHZ HCMOS SMD
XL
90.1368 MHz
HCMOS
3.3V
±25ppm
-
XLH736028.375000I
Renesas晶振
XTAL OSC XO 28.3750MHZ HCMOS SMD
XL
28.375 MHz
HCMOS
3.3V
±25ppm
-
XUH738016.125000X
Renesas晶振
CLCC 7.00X5.00X1.30 MM, 2.54MM P
XU
16.125 MHz
HCMOS
3.3V
±20ppm
-
XLH328019.200000X
Renesas晶振
XTAL OSC XO 19.2000MHZ HCMOS SMD
XL
19.2 MHz
HCMOS
2.5V
±20ppm
-
XLH528040.000000X
Renesas晶振
XTAL OSC XO 40.0000MHZ HCMOS SMD
XL
40 MHz
HCMOS
2.5V
±20ppm
-
XUH738044.736000X
Renesas晶振
CLCC 7.00X5.00X1.30 MM, 2.54MM P
XU
44.736 MHz
HCMOS
3.3V
±20ppm
-
XUH518033.333333X
Renesas晶振
CLCC 5.00X3.20X1.10 MM, 2.54MM P
XU
33.333333 MHz
HCMOS
1.8V
±20ppm
-
XUH738025.000000X
Renesas晶振
CLCC 7.00X5.00X1.30 MM, 2.54MM P
XU
25 MHz
HCMOS
3.3V
±20ppm
-
XLH526080.000000I
Renesas晶振
XTAL OSC XO 80.0000MHZ HCMOS SMD
XL
80 MHz
HCMOS
2.5V
±25ppm
-
XLH738078.643200X
Renesas晶振
XTAL OSC XO 78.6432MHZ HCMOS SMD
XL
78.6432 MHz
HCMOS
3.3V
±20ppm
-
XLH726096.000000I
Renesas晶振
XTAL OSC XO 96.0000MHZ HCMOS SMD
XL
96 MHz
HCMOS
2.5V
±25ppm
-
XLH728080.000000X
Renesas晶振
XTAL OSC XO 80.0000MHZ HCMOS SMD
XL
80 MHz
HCMOS
2.5V
±20ppm
-
XLH738000.921600X
Renesas晶振
XTAL OSC XO 921.6000KHZ HCMOS
XL
921.6 kHz
HCMOS
3.3V
±20ppm
-
XLH336029.500000I
Renesas晶振
XTAL OSC XO 29.5000MHZ HCMOS SMD
XL
29.5 MHz
HCMOS
3.3V
±25ppm
-
XLH735015.360000I
Renesas晶振
XTAL OSC XO 15.3600MHZ HCMOS SMD
XL
15.36 MHz
HCMOS
3.3V
±50ppm
-
XLH736045.000000X
Renesas晶振
XTAL OSC XO 45.0000MHZ HCMOS SMD
XL
45 MHz
HCMOS
3.3V
±25ppm
-
XAH526033.300000I
Renesas晶振
XTAL OSC XO 33.3000MHZ LVCMOS
XA
33.3 MHz
LVCMOS
2.5V
±25ppm
-
XLH336013.330000I
Renesas晶振
XTAL OSC XO 13.3300MHZ LVCMOS
XL
13.33 MHz
LVCMOS
3.3V
±25ppm
-
XLH336037.125000I
瑞萨差分晶振
XTAL OSC XO 37.1250MHZ LVCMOS
XL
37.125 MHz
LVCMOS
3.3V
±25ppm
-
XLH336002.048000I
Renesas晶振
XTAL OSC XO 2.0480MHZ LVCMOS SMD
XL
2.048 MHz
LVCMOS
3.3V
±25ppm
-
XLH336032.051655I
Renesas晶振
XTAL OSC XO 32.051655MHZ LVCMOS
XL
32.051655 MHz
LVCMOS
3.3V
±25ppm
-
XLH328033.333000X
Renesas晶振
XTAL OSC XO 33.3330MHZ LVCMOS
XL
33.333 MHz
LVCMOS
2.5V
±20ppm
-
XLH336033.330000I
Renesas晶振
XTAL OSC XO 33.3300MHZ LVCMOS
XL
33.33 MHz
LVCMOS
3.3V
±25ppm
-
XLH336031.948512I
Renesas晶振
XTAL OSC XO 31.948512MHZ LVCMOS
XL
31.948512 MHz
LVCMOS
3.3V
±25ppm
-
XLH336019.000000I
Renesas晶振
XTAL OSC XO 19.0000MHZ LVCMOS
XL
19 MHz
LVCMOS
3.3V
±25ppm
-
XLH730030.875520I
Renesas晶振
XTAL OSC XO 30.87552MHZ LVCMOS
XL
30.87552 MHz
LVCMOS
3.3V
±100ppm
-
XLH535003.686000I
Renesas晶振
XTAL OSC XO 3.6860MHZ LVCMOS SMD
XL
3.686 MHz
LVCMOS
3.3V
±50ppm
-
XLH736078.125000X
Renesas晶振
XTAL OSC XO 78.1250MHZ LVCMOS
XL
78.125 MHz
LVCMOS
3.3V
±25ppm
-
XLH736025.750000X
Renesas晶振
XTAL OSC XO 25.7500MHZ LVCMOS
XL
25.75 MHz
LVCMOS
3.3V
±25ppm
-
XLH535013.330000I
Renesas晶振
XTAL OSC XO 13.3300MHZ LVCMOS
XL
13.33 MHz
LVCMOS
3.3V
±50ppm
-
XLH338040.953873X
Renesas晶振
XTAL OSC XO 40.953873MHZ LVCMOS
XL
40.953873 MHz
LVCMOS
3.3V
±20ppm
-
在许多不同的领域,机器学习和嵌入式系统的融合将带来巨大的机遇。例如,医疗保健现在正在获得将资源投入人工智能技术的回报。物联网也将从人工智能的引入中获得巨大收益。我们将拥有智能自动化有源晶振解决方案,促进能源节约、成本效率以及人类失误的终结。
预测是许多ML/AI对话的中心,因为组织希望使用神经网络和深度学习来推测时间序列数据。价值在于吸收信息并迅速了解信息如何改变长期前景的能力。此外,很大一部分情况依赖于全球供应链,这使得改进变得更加难以精确预测。领先全球Renesas quartz crystal oscillator专用智能家居.
也许生产线上最不安全的位置现在是由机器处理的。由于嵌入式电子和工业自动化的进步,我们的OSC晶振有了突破性的微控制器来运行装配厂的整个机械生产系统。然而,这些机器中的大多数并不完全是自动的,仍然需要一种人工干预。无论如何,机器学习的引入将有助于工程师制造真正智能的机器,这些机器可以在没有人类干预的情况下工作。
Throughout the most recent years, as sensor and MCU costs dove and shipped volumes have gone through the roof, an ever-increasing number of organizations have attempted to exploit by adding sensor-driven embedded AI to their products.
Automotive is driving the trend– the average non-autonomous vehicle presently has 100 sensors, sending information to 30-50 microcontrollers that run about 1m lines of code and create 1TB of data per vehicle every day. Extravagance vehicles may have twice the same number of, and autonomous vehicles increase the sensor check significantly more drastically.
Yet, it's not simply an automotive trend. Industrial equipment is turning out to be progressively "brilliant" as creators of rotating, reciprocating and other types of equipment rush to add usefulness for condition monitoring and predictive support, and a huge number of new consumer products from toothbrushes, to vacuum cleaners, to fitness monitors add instrumentation and "smarts".
An ever-increasing number of smart devices are being introduced each month. We are now at a point where artificial intelligence and machine learning in its exceptionally essential structure has discovered its way into the core of embedded devices. For example, smart home lighting systems that automatically turn on and off depend on whether anybody is available in the room. By all accounts, the system doesn't look excessively stylish. Yet, when you consider everything, you understand that the system is really settling on choices all alone. In view of the contribution from the sensor, the microcontroller/system-on-chip (SoC) concludes if to turn on the light or not.
To do all of this simultaneously, defeating variety to achieve troublesome detections in real-time, at the edge, inside the vital limitations isn't at all simple. In any case, with current tools, integrating new options for machine learning for signals (like Reality AI) it is getting simpler.
They can regularly achieve detections that escape traditional engineering models. They do this by making significantly more productive and compelling utilization of data to conquer variation. Where traditional engineering approaches will ordinarily be founded on a physical model, utilizing data to appraise parameters, machine learning approaches can adapt autonomously of those models. They figure out how to recognize signatures straightforwardly from the raw information and utilize the mechanics of machine learning (mathematics) to isolate targets from non-targets without depending on physical science.
There are a lot of different regions where the convergence of machine learning and embedded systems will prompt great opportunities. Healthcare, for example, is now receiving the rewards of putting resources into AI technology. The Internet of Things or IoT will likewise profit enormously from the introduction of artificial intelligence. We will have smart automation solutions that will prompt energy savings, cost proficiency as well as the end of human blunder.
Forecasting is at the center of so many ML/AI conversations as organizations hope to use neural networks and deep learning to conjecture time series data. The worth is the capacity to ingest information and quickly acknowledge insight into how it changes the long-term outlook. Further, a large part of the circumstance relies upon the global supply chain, which makes improvements significantly harder to precisely project.
Probably the most unsafe positions in production lines are as of now being dealt by machines. Because of the advancement in embedded electronics and industrial automation, we have ground-breaking microcontrollers running the whole mechanical production systems in assembling plants. However, the majority of these machines are not exactly completely automatic and still require a type of human intercession. In any case, the time will come when the introduction of machine learning will help engineers concoct truly intelligent machines that can work with zero human mediation.